Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
2.
Int Immunopharmacol ; 130: 111765, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38447414

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) displayed poor response to programmed death-1 (PD-1) blockade therapy. Regulatory T cells (Tregs) was one of major immunosuppressive components in Tumor microenvironment and plays a vital role in the resistance of immunotherapy. Coinhibitory receptors regulate function of regulatory Tregs and are associated with resistance of PD-1 blockade. However, the coinhibitory receptors expression and differentiated status of Tregs in AML patients remain to be unclear. METHODS: Phenotypic determination of Tregs and CD8+ T cells in bone marrow of healthy donors and AML patients was performed by flow cytometry. Coculture experiments of AML and Tregs in vitro were performed and the concentrations of lactate acid (LA) in the supernatant were examined by ELISA. RESULTS: More Tregs differentiated into effector subsets in AML patients. However, PD-1 and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression on Tregs were comparable in healthy donors and AML patients. Further analysis showed that PD-1+ and PD-1+TIGIT+Tregs are more abundant in the bone marrow of patients with higher leukemic load. Moreover, PD-1+ Tregs accumulation was associated with higher level of senescent CD4+ T cells and increased frequencies of exhausted CD4+ as well as CD8+ T cells. Notably, neither Tregs nor their effector subsets were decreased among patients in complete remission. PD-1 expression was significantly downregulated in Tregs after achieving complete remission. Mechanistically, both AML cell line (KG-1α) and primary AML blasts produced high concentration of LA. Blockade of LA by lactate transporter inhibitor abrogated the upregulation of PD-1 by AML cells. CONCLUSION: PD-1+ Tregs accumulation in bone marrow in higher leukemic burden setting was linked to lactate acid secreted by AML blasts and decreased after disease remission. Our findings provided a novel insight into Tregs in AML and possible mechanism for resistance of PD-1 blockade in AML.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Lactic Acid , Tumor Burden , Leukemia, Myeloid, Acute/metabolism , Tumor Microenvironment
3.
Environ Sci Pollut Res Int ; 31(11): 16256-16273, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342830

ABSTRACT

As the economy rapidly develops, chemicals are widely produced and used. This has exacerbated the problems associated with environmental pollution, raising the need for efficient toxicological evaluation techniques to investigate the toxic effects and mechanisms of toxicity of environmental pollutants. The progress in the techniques of cell culture in three dimensions has resulted in the creation of models that are more relevant in terms of biology and physiology. This enables researchers to study organ development, toxicology, and drug screening. Adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs) can be obtained from various mammalian tissues, including cancerous and healthy tissues. Such stem cells exhibit a significant level of tissue memory and ability to self-assemble. When cultivated in 3D in vitro environments, the resulting organoids demonstrate a remarkable capacity to recapitulate the cellular composition and function of organs in vivo. Recently, many tumors' tissue-derived organoids have been widely used in research on tumor pathogenesis, drug development, precision medicine, and other fields, including those derived from colon cancer, cholangiocarcinoma, liver cancer, and gastric cancer. However, the application of organoid models for evaluating the toxicity of environmental pollutants is still in its infancy. This review introduces the characteristics of the toxicity responses of organoid models upon exposure to pollutants from the perspectives of organoid characteristics, tissue types, and their applications in toxicology; discusses the feasibility of using organoid models in evaluating the toxicity of pollutants; and provides a reference for future toxicological studies on environmental pollutants based on organoid models.


Subject(s)
Environmental Pollutants , Liver Neoplasms , Animals , Humans , Environmental Pollutants/metabolism , Organoids/metabolism , Cell Culture Techniques , Drug Evaluation, Preclinical , Mammals
4.
Sci Total Environ ; 912: 168722, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008317

ABSTRACT

In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R2 = 0.77-0.93), and the accumulation of NPAHs in adipose tissue was higher than that in kidney or liver tissue. Depending on the mouse adipose model, the NPAHs-RBA ranged from 1.88 % to 73.92 %, and a strongly significant negative relationship (R2 = 0.94, p < 0.05) was found between the NPAHs-RBA and Log Kow. The simplified experiment of the TITF showed that the composition of the GIF medium had a significant effect on the bioaccessibilities of NPAHs. The NPAH bioaccessibilities measured by the Tenax improved simplified FOREhST method (TISF) (9.0-36.5 %) were higher than that of the traditional FOREhST method (6.8-22.8 %) but significantly lower than that of the TITF method (16.8-55.2 %). With an increase in the bile concentration in the GIF (from 6 to 10 g/L), the bioaccessibilities of NPAHs increased from 9.0 to 36.5 % to 12.9-42.4 %. The accuracies of the four in vitro methods for predicting the bioavailabilities of NPAHs was in the following order: Tenax improved simplified FOREhST method with increased bile concentration (TITF-IB) (R2 = 0.54-0.87) ≈ TITF (R2 = 0.55-0.85) > TISF (R2 = 0.41-0.77) > FOREhST (R2 = 0.02-0.68). These results indicated that the simple in vitro method could also effectively predict the bioavailabilities of NPAHs.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Humans , Animals , Mice , Environmental Monitoring/methods , Soil , Biological Availability , Nitrates/analysis , Polycyclic Aromatic Hydrocarbons/analysis
5.
Drugs R D ; 23(4): 439-451, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847357

ABSTRACT

BACKGROUND: The FLT3/ITD mutation exists in many acute myeloid leukemia (AML) patients and is related to the poor prognosis of patients. In this study, we attempted to evaluate the antitumor activity of simvastatin, a member of the statin class of drugs, in vitro and in vivo models of FLT3/ITD AML and to identify the potential mechanisms. METHODS: Cell Counting Kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining kits were used to detect cell viability and apoptosis, respectively. Subsequently, Western blot and rescue experiment were applied to explore the potential molecular mechanism. In vivo anti-leukemia activity of simvastatin was evaluated in xenograft mouse models. RESULTS: In vitro experiments revealed that simvastatin inhibited AML progression in a dose- and time-dependent manner, while in vivo experiments showed that simvastatin significantly reduced tumor burden in FLT3/ITD xenograft mouse models. After simvastatin treatment of FLT3/ITD AML cells, intracellular Rap1 was downregulated and the phosphorylation levels of its downstream targets MEK, ERK and p38 were significantly inhibited. The rescue experiment showed that mevalonate, an intermediate product of the metabolic pathway of mevalonate, and its downstream geranylgeranyl pyrophosphate (GGPP) played a key role in this process. Finally, we demonstrate that simvastatin can induce apoptosis of primary AML cells, while having no effect on peripheral blood mononuclear cells from normal donors. CONCLUSIONS: Simvastatin can selectively and effectively eradicate FLT3/ITD AML cells in vitro and in vivo, and its mechanism may be related to the disruption of the HMG-CoA reductase pathway and the downregulation of the MEK/ERK and p38-MAPK signaling pathways.


Subject(s)
Leukemia, Myeloid, Acute , Simvastatin , Humans , Animals , Mice , Simvastatin/pharmacology , Simvastatin/therapeutic use , Leukocytes, Mononuclear/metabolism , Mevalonic Acid/pharmacology , Mevalonic Acid/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Apoptosis , Signal Transduction , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Mitogen-Activated Protein Kinase Kinases/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/pharmacology
6.
Thromb J ; 21(1): 105, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794471

ABSTRACT

BACKGROUND: Individuals with multiple myeloma (MM) receiving immunomodulatory drugs (IMiDs) are at risk of developing venous thromboembolism (VTE), a serious complication. There is no established clinical model for predicting VTE in the Chinese population. We develop a new risk assessment model (RAM) for IMiD-associated VTE in Chinese MM patients. METHODS: We retrospectively selected 1334 consecutive MM patients receiving IMiDs from 16 medical centers in China and classified them randomly into the derivation and validation cohorts. A multivariate Cox regression model was used for analysis. RESULTS: The overall incidence of IMiD-related VTE in Chinese MM patients was 6.1%. Independent predictive factors of VTE (diabetes, ECOG performance status, erythropoietin-stimulating agent use, dexamethasone use, and VTE history or family history of thrombosis) were identified and merged to develop the RAM. The model identified approximately 30% of the patients in each cohort at high risk for VTE. The hazard ratios (HRs) were 6.08 (P < 0.001) and 6.23 (P < 0.001) for the high-risk subcohort and the low-risk subcohort, respectively, within both the derivation and validation cohorts. The RAM achieved satisfactory discrimination with a C statistic of 0.64. The stratification approach of the IMWG guidelines yielded respective HRs of 1.77 (P = 0.053) and 1.81 (P = 0.063). The stratification approach of the SAVED score resulted in HRs of 3.23 (P = 0.248) and 1.65 (P = 0.622), respectively. The IMWG guideline and the SAVED score-based method yielded C statistics of 0.58 and 0.51, respectively. CONCLUSIONS: The new RAM outperformed the IMWG guidelines and the SAVED score and could potentially guide the VTE prophylaxis strategy for Chinese MM patients.

7.
Heliyon ; 9(8): e18298, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560652

ABSTRACT

Lung cancer is a malignancy characterized by high morbidity and mortality, with lung adenocarcinoma being the most prevalent subtype. Our preliminary studies have demonstrated that the Juan-Liu-San-Jie (JLSJ) prescription, a Traditional Chinese Medicine prescription, possesses anti-lung adenocarcinoma cancer properties. However, the molecular mechanism underlying the therapeutic effects of the JLSJ prescription for lung adenocarcinoma remains incompletely elucidated. To address the knowledge gap, the present study employed network pharmacology to identify potential therapeutic targets. Specifically, the study utilized TCMSP, TCMID, and related references, as well as ChemMapper, to identify and predict the main active components and potential targets. Additionally, differentially expressed genes associated with the disease were obtained from the microarray dataset GSE19804 and GSE118370. The protein-protein Interaction network and Target-pathway network were then constructed. We also conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and subsequently presented the top 20 enriched pathways. The results indicated that the anti-lung cancer effects of JLSJ prescription may be attributed to its ability to mediate apoptosis of tumor cells, potentially through the PI3K/Akt signaling pathway. Then, a series of in vitro and in vivo experiments were conducted to validate the molecular mechanism predicted by network pharmacology. The findings of the in vivo study suggested that the JLSJ prescription could inhibit the growth of xenograft tumors of lung adenocarcinoma with fewer adverse effects. Also, the in vitro experiments corroborated that the JLSJ prescription could induce apoptosis of A549 cells. Furthermore, the upregulation of pro-apoptosis-related proteins and mRNAs, coupled with the downregulation of anti-apoptotic-related proteins and mRNAs, was observed. In conclusion, inducing apoptosis by inhibiting the PI3K/Akt signaling pathway was one of the underlying mechanisms by which the JLSJ prescription exerted its anti-lung adenocarcinoma effect.

8.
Cell Death Dis ; 14(8): 573, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644011

ABSTRACT

Persistence of leukemic stem cells (LSCs) is one of the determining factors to acute myeloid leukemia (AML) treatment failure and responsible for the poor prognosis of the disease. Hence, novel therapeutic strategies that target LSCs are crucial for treatment success. We investigated if targeting Bcl-2 and peroxisome proliferator activated receptor α (PPARα), two distinct cell survival regulating mechanisms could eliminate LSCs. This study demonstrate that the Bcl-2 inhibitor venetoclax combined with the PPARα agonist chiglitazar resulted in synergistic killing of LSC-like cell lines and CD34+ primary AML cells while sparing their normal counterparts. Furthermore, the combination regimen significantly suppressed AML progression in patient-derived xenograft (PDX) mouse models. Mechanistically, chiglitazar-mediated PPARα activation inhibited the transcriptional activity of the PIK3AP1 gene promoter and down-regulated the PI3K/Akt signaling pathway and anti-apoptotic Bcl-2 proteins, leading to cell proliferation inhibition and apoptosis induction, which was synergized with venetoclax. These findings suggest that combinatorial Bcl-2 inhibition and PPARα activation selectively eliminates AML cells in vivo and vitro, representing an effective therapy for patients with relapsed and refractory AML.


Subject(s)
PPAR alpha , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Disease Models, Animal , Stem Cells
9.
Article in English | MEDLINE | ID: mdl-37289612

ABSTRACT

In this article, we consider the problem of inferring the sign of a link based on known sign data in signed networks. Regarding this link sign prediction problem, signed directed graph neural networks (SDGNNs) provides the best prediction performance currently to the best of our knowledge. In this article, we propose a different link sign prediction architecture called subgraph encoding via linear optimization (SELO), which obtains overall leading prediction performances compared to the state-of-the-art algorithm SDGNN. The proposed model utilizes a subgraph encoding approach to learn edge embeddings for signed directed networks. In particular, a signed subgraph encoding approach is introduced to embed each subgraph into a likelihood matrix instead of the adjacency matrix through a linear optimization (LO) method. Comprehensive experiments are conducted on five real-world signed networks with area under curve (AUC), F1, micro-F1, and macro-F1 as the evaluation metrics. The experiment results show that the proposed SELO model outperforms existing baseline feature-based methods and embedding-based methods on all the five real-world networks and in all the four evaluation metrics.

10.
Front Pharmacol ; 14: 1101861, 2023.
Article in English | MEDLINE | ID: mdl-37342589

ABSTRACT

Background: Apalutamide is a new drug class, which is approved to treat prostate cancer (PCa). The aim of our study was to assess the safety profiles of apalutamide in real-world through data mining of the United States Food and Drug Administration Adverse Event Reporting System (FAERS). Method: We included adverse event (AE) reports regarding apalutamide submitted to the FAERS from 2018 quarter 1 (2018Q1) to 2022 quarter 1 (2022Q1). Disproportionality analyses, including reporting odds ratio (ROR), were performed to identify the signals of AEs in patients receiving apalutamide. A signal was detected if the lower limit of the 95% confidence interval (CI) of ROR >1 and at least 3 AEs were reported. Results: The FAERS database documented 4,156 reports regarding apalutamide from 1 January 2018, to 31 March 2022. A total of 100 significant disproportionality preferred terms (PTs) were retained. Frequently observed AEs in patients receiving apalutamide included rash, fatigue, diarrhea, hot flush, fall, weight decreased, hypertension. The most significant system organ class (SOC) was "skin and subcutaneous tissue disorders", which mainly consisted of dermatological adverse events (dAEs). The additional AEs observed with the significantly signal contain lichenoid keratosis, increased eosinophil count, bacterial pneumonia, pulmonary tuberculosis, hydronephrosis. Conclusion: Our findings provide valuable evidence for apalutamide safety profile in the real-world, which could help clinicians and pharmacists to enhance their vigilance and improve the safety of apalutamide in clinical practice.

11.
Front Immunol ; 14: 1139517, 2023.
Article in English | MEDLINE | ID: mdl-36960073

ABSTRACT

Introduction: Despite accumulated evidence in T-cell exhaustion in acute myeloid leukemia (AML), the immunotherapeutic targeting exhausted T cells such as programmed cell death protein 1 (PD-1) blockade in AML failed to achieve satisfying efficacy. Characteristics of exhausted T cells in AML remained to be explored. Methods: Phenotypic analysis of T cells in bone marrow (BM) using flow cytometry combining senescent and exhausted markers was performed in de novo AML patients and healthy donors as well as AML patients with complete remission (CR). Functional analysis of T-cell subsets was also performed in de novo AML patients using flow cytometry. Results: T cells experienced a phenotypic shift to terminal differentiation characterized by increased loss of CD28 expression and decrease of naïve T cells. Additionally, lack of CD28 expression could help define a severely exhausted subset from generally exhausted T cells (PD-1+TIGIT+). Moreover, CD28- subsets rather than CD28+ subsets predominantly contributed to the significant accumulation of PD-1+TIGIT+ T cells in AML patients. Further comparison of de novo and CR AML patients showed that T-cell exhaustion status was improved after disease remission, especially in CD28+ subsets. Notably, higher frequency of CD28-TIGIT-CD4+ T cells correlated with the presence of minimal residual disease in AML-CR group. However, the correlation between CD28- exhausted T cells and cytogenetic risk or white blood cell count was not observed, except for that CD28- exhausted CD4+ T cells correlated with lymphocyte counts. Intriguingly, larger amount of CD28-TGITI+CD8+ T cells at diagnosis was associated with poor treatment response and shorter leukemia free survival. Discussion: In summary, lack of CD28 expression defined a severely exhausted status from exhausted T cells. Accumulation of CD28- exhausted T cells was linked to occurrence of AML, and correlated to poor clinical outcome. Our data might facilitate the development of combinatory strategies to improve the efficacy of PD-1 blockade in AML.


Subject(s)
CD8-Positive T-Lymphocytes , Leukemia, Myeloid, Acute , Humans , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD28 Antigens/metabolism , T-Cell Exhaustion , Leukemia, Myeloid, Acute/therapy , Receptors, Immunologic/metabolism
12.
Cancer Lett ; 554: 215997, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36396101

ABSTRACT

Treatment of acute myeloid leukemia (AML) with chemotherapeutic agents fails to eliminate leukemia stem cells (LSC),and thus patients remain at high risk for relapse. Therefore, the identification of agents that target LSC is an important consideration for the development of new therapies. Enhanced glycolysis in LSC contributes to the aggressiveness of AML, which is difficult to be targeted. In this study, we showed that targeting peroxisome-proliferator-activated receptor α (PPARα), a ligand-activated transcription factor by chiglitazar provided a promising therapeutic approach. We first identified that chiglitazar reduced cell viability and proliferation of the leukemia stem-like cells population in AML. Treatment with chiglitazar blocked the ubiquitination of PPARα and increased its expression, resulting in the inhibition of glucose metabolism and apoptosis of AML cells. Consistent with its anti-leukemia stem-like cells activity in vitro, chiglitazar treatment in vivo resulted in the significant killing of leukemia stem-like cells as demonstrated in AML patient-derived xenograft (PDX) models. Mechanistically, PPARα overexpression inhibited the expression and promoter activity of PGK1 through blocking HIF1-α interaction on the PGK1 promoter. Thus, we concluded that targeting PPARα may serve as a novel approach for enhancing stem and progenitor cells elimination in AML.


Subject(s)
Leukemia, Myeloid, Acute , PPAR alpha , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Phosphoglycerate Kinase/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/therapeutic use , Signal Transduction
13.
IEEE Trans Cybern ; 53(11): 6951-6962, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35604980

ABSTRACT

In this article, an augmented game approach is proposed for the formulation and analysis of distributed learning dynamics in multiagent games. Through the design of the augmented game, the coupling structure of utility functions among all the players can be reformulated into an arbitrary undirected connected network while the Nash equilibria are preserved. In this case, any full-information game learning dynamics can be recast into a distributed form, and its convergence can be determined from the structure of the augmented game. We apply the proposed approach to generate both deterministic and stochastic distributed gradient play and obtain several negative convergent results about the distributed gradient play: 1) a Nash equilibrium is convergent under the classic gradient play, yet its corresponding augmented Nash equilibrium may be not convergent under the distributed gradient play and, on the other side, 2) a Nash equilibrium is not convergent under the classic gradient play, yet its corresponding augmented Nash equilibrium may be convergent under the distributed gradient play. In particular, we show that the variational stability structure (including monotonicity as a special case) of a game is not guaranteed to be preserved in its augmented game. These results provide a systematic methodology about how to formulate and then analyze the feasibility of distributed game learning dynamics.

14.
Theranostics ; 12(18): 7760-7774, 2022.
Article in English | MEDLINE | ID: mdl-36451863

ABSTRACT

Rationale: Bone destruction is a hallmark of multiple myeloma (MM) and affects more than 80% of patients. Although previous works revealed the roles of N6-methyladenosine (m6A) reader hnRNPA2B1 in the development of tumors, whether hnRNPA2B1 regulates bone destruction in MM is still unknown. Methods: Alizarin red S staining, TRAP staining, ELISA and quantitative real-time PCR assays were used to evaluate osteogenesis and osteoclastogenesis in vitro. X ray and bone histomorphometric analysis were preformed to identify bone resorption and bone formation in vivo. Exosome isolation and characterization were demonstrated by transmission electron microscopy, dynamic light scattering, immunofluorescence and flow cytometry assays. The interactions between hnRNPA2B1 and primary microRNAs were examined using RNA pull-down and RIP assays. Coimmunoprecipitation assay was used to test the interaction between hnRNPA2B1 and DGCR8 proteins. Luciferase assay was established to assess miRNAs target genes. Results: Here we show that myeloma cells hnRNPA2B1 mediates microRNAs processing and upregulates miR-92a-2-5p and miR-373-3p expression. These two microRNAs are transported to recipient monocytes or mesenchymal stem cells (MSCs) through exosomes, leading to activation of osteoclastogenesis and suppression of osteoblastogenesis by inhibiting IRF8 or RUNX2. Furthermore, clinical studies revealed a highly positive correlation between the level of myeloma cells hnRNPA2B1 and the number of osteolytic bone lesions in myeloma patients. Conclusions: This study elucidates an important mechanism by which myeloma-induced bone lesions, suggesting that hnRNPA2B1 may be targeted to prevent myeloma-associated bone disease.


Subject(s)
Bone Diseases , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , MicroRNAs , Multiple Myeloma , Humans , Multiple Myeloma/complications , MicroRNAs/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Osteogenesis
15.
Front Chem ; 10: 1019822, 2022.
Article in English | MEDLINE | ID: mdl-36238103

ABSTRACT

The process method of a Si3N4 ceramic sealed cavity is realized by vacuum brazing and chemical reaction at 1,100°C and 0.5 MPa pressure. Through the combination of Si3N4 ceramic polishing and thinning, inductively coupled plasma etching, and high-temperature metal filler (Ti-Zr-Cu-Ni) brazing process, a vacuum-sealed cavity suitable for high-temperature environments was prepared. The cross section of the bonding interface was characterized by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), which indicated that the two Si3N4 ceramic were well bonded, the cavity structure remained intact, and the bonding interface strength exceeded 5.13 MPa. Furthermore, it retained its strong bonding strength after in high-temperature environments of 1,000, 1,050, and 1,100°C for 1 h. This indicates that a brazed vacuum-sealed cavity can be used in high-temperature environments. Through the proposed method, pressure sensor that can withstand high temperatures can be developed.

16.
Front Immunol ; 13: 950001, 2022.
Article in English | MEDLINE | ID: mdl-36091041

ABSTRACT

Background: As the crosstalk between metabolism and antitumor immunity continues to be unraveled, we aim to develop a prognostic gene signature that integrates lipid metabolism and immune features for patients with lung adenocarcinoma (LUAD). Methods: First, differentially expressed genes (DEGs) related to lipid metabolism in LUAD were detected, and subgroups of LUAD patients were identified via the unsupervised clustering method. Based on lipid metabolism and immune-related DEGs, variables were determined by the univariate Cox and LASSO regression, and a prognostic signature was established. The prognostic value of the signature was evaluated by the Kaplan-Meier method, time-dependent ROC, and univariate and multivariate analyses. Five independent GEO datasets were employed for external validation. Gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analysis were performed to investigate the underlying mechanisms. The sensitivity to common chemotherapeutic drugs was estimated based on the GDSC database. Finally, we selected PSMC1 involved in the signature, which has not been reported in LUAD, for further experimental validation. Results: LUAD patients with different lipid metabolism patterns exhibited significant differences in overall survival and immune infiltration levels. The prognostic signature incorporated 10 genes and stratified patients into high- and low-risk groups by median value splitting. The areas under the ROC curves were 0.69 (1-year), 0.72 (3-year), 0.74 (5-year), and 0.74 (10-year). The Kaplan-Meier survival analysis revealed a significantly poorer overall survival in the high-risk group in the TCGA cohort (p < 0.001). In addition, both univariate and multivariate Cox regression analyses indicated that the prognostic model was the individual factor affecting the overall survival of LUAD patients. Through GSEA and GSVA, we found that tumor progression and inflammatory and immune-related pathways were enriched in the high-risk group. Additionally, patients with high-risk scores showed higher sensitivity to chemotherapeutic drugs. The in vitro experiments further confirmed that PSMC1 could promote the proliferation and migration of LUAD cells. Conclusions: We developed and validated a novel signature incorporating both lipid metabolism and immune-related genes for all-stage LUAD patients. This signature can be applied not only for survival prediction but also for guiding personalized chemotherapy and immunotherapy regimens.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Humans , Kaplan-Meier Estimate , Lipid Metabolism/genetics , Lung Neoplasms/pathology , Prognosis
17.
Front Oncol ; 12: 732860, 2022.
Article in English | MEDLINE | ID: mdl-35847885

ABSTRACT

Tumor-associated macrophage (TAM)-mediated angiogenesis in the tumor microenvironment is a prerequisite for lung cancer growth and metastasis. Therefore, targeting TAMs, which block angiogenesis, is expected to be a breakthrough in controlling the growth and metastasis of lung cancer. In this study, we found that Sanguinarine (Sang) inhibits tumor growth and tumor angiogenesis of subcutaneously transplanted tumors in Lewis lung cancer mice. Furthermore, Sanguinarine inhibited the proliferation, migration, and lumen formation of HUVECs and the expression of CD31 and VEGF by regulating the polarization of M2 macrophages in vitro. However, the inhibitory effect of Sanguinarine on angiogenesis remained in vivo despite the clearance of macrophages using small molecule drugs. Further high-throughput sequencing suggested that WNT/ß-Catenin signaling might represent the underlying mechanism of the beneficial effects of Sanguinarine. Finally, the ß-Catenin activator SKL2001 antagonized the effect of Sanguinarine, indicating that Sanguinarine can regulate M2-mediated angiogenesis through the WNT/ß-Catenin pathway. In conclusion, this study presents the first findings that Sanguinarine can function as a novel regulator of the WNT/ß-Catenin pathway to modulate the M2 macrophage polarization and inhibit angiogenesis, which has potential application value in immunotherapy and antiangiogenic therapy for lung cancer.

18.
Int Immunopharmacol ; 110: 108964, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35728305

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) play an important role in the tumor-induced immunosuppressive microenvironment and have been linked with tumor development, proliferation, and resistance to treatment. Therefore, therapies that target MDSCs, such as sanguinarine (SNG), are now being considered potential treatments for lung cancer. However, the role of SNG in regulating the immune response in lung cancer is still not clear. In view of this, we evaluated the mechanism involved in the antitumor and immunoregulatory response to SNG therapy in a Lewis lung cancer (LLC) mouse model. The tumor mass and volume in the SNG treated LLC mouse model were significantly lower when compared with the control group (p < 0.05), indicating a good response to SNG. SNG also reduced the damage to the spleen, decreased the proportion of MDSCs, and increased the production of T helper 1 (Th1), T helper 2 (Th2), cytotoxic T-lymphocyte (CTL), macrophages, dendritic cells (DC) within the spleen. However, it did not affect the proportion of T helper 17 (Th17) and regulatory T cells (Treg). SNG also down-regulated the proportion of MDSCs in vitro and promoted their apoptosis, differentiation, and maturation. SNG was found to induce the differentiation of MDSCs into macrophages and DC through the nuclear factor kappa-B (NF-κB) pathway in vitro, while it also decreased the expression of arginase-1 (Arg-1) anti-inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) in MDSCs.SNG also reduced the inhibitory effect on the proliferation of CD8+T cells. SNG may reduce the immunosuppressive state induced by lung cancer by promoting cell differentiation and by inhibiting the immunosuppressive activity of MDSCs.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Myeloid-Derived Suppressor Cells , Animals , Benzophenanthridines/metabolism , Benzophenanthridines/pharmacology , Benzophenanthridines/therapeutic use , Carcinoma, Lewis Lung/drug therapy , Disease Models, Animal , Immunosuppression Therapy , Isoquinolines , Lung Neoplasms/pathology , Mice , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment
19.
Article in English | MEDLINE | ID: mdl-35737608

ABSTRACT

In this article, we consider the problem of distributed game-theoretic learning in games with finite action sets. A timestamp-based inertial best-response dynamics is proposed for Nash equilibrium seeking by players over a communication network. We prove that if all players adhere to the dynamics, then the states of players will almost surely reach consensus and the joint action profile of players will be absorbed into a Nash equilibrium of the game. This convergence result is proven under the condition of weakly acyclic games and strongly connected networks. Furthermore, to encounter more general circumstances, such as games with graphical action sets, state-based games, and switching communication networks, several variants of the proposed dynamics and its convergent results are also developed. To demonstrate the validity and applicability, we apply the proposed timestamp-based learning dynamics to design distributed algorithms for solving some typical finite games, including the coordination games and congestion games.

20.
Front Genet ; 13: 810292, 2022.
Article in English | MEDLINE | ID: mdl-35368661

ABSTRACT

Gastric cancer (GC) is a common malignant tumor of the digestive system. Recent studies revealed that high gamma-glutamyl-transferase 5 (GGT5) expression was associated with a poor prognosis of gastric cancer patients. In the present study, we aimed to confirm the expression and prognostic value of GGT5 and its correlation with immune cell infiltration in gastric cancer. First, we compared the differential expression of GGT5 between gastric cancer tissues and normal gastric mucosa in the cancer genome atlas (TCGA) and GEO NCBI databases using the most widely available data. Then, the Kaplan-Meier method, Cox regression, and univariate logistic regression were applied to explore the relationships between GGT5 and clinical characteristics. We also investigated the correlation of GGT5 with immune cell infiltration, immune-related genes, and immune checkpoint genes. Finally, we estimated enrichment of gene ontologies categories and relevant signaling pathways using GO annotations, KEGG, and GSEA pathway data. The results showed that GGT5 was upregulated in gastric cancer tissues compared to normal tissues. High GGT5 expression was significantly associated with T stage, histological type, and histologic grade (p < 0.05). Moreover, gastric cancer patients with high GGT5 expression showed worse 10-years overall survival (p = 0.008) and progression-free intervals (p = 0.006) than those with low GGT5 expression. Multivariate analysis suggested that high expression of GGT5 was an independent risk factor related to the worse overall survival of gastric cancer patients. A nomogram model for predicting the overall survival of GC was constructed and computationally validated. GGT5 expression was positively correlated with the infiltration of natural killer cells, macrophages, and dendritic cells but negatively correlated with Th17 infiltration. Additionally, we found that GGT5 was positively co-expressed with immune-related genes and immune checkpoint genes. Functional analysis revealed that differentially expressed genes relative to GGT5 were mainly involved in the biological processes of immune and inflammatory responses. In conclusion, GGT5 may serve as a promising prognostic biomarker and a potential immunological therapeutic target for GC, since it is associated with immune cell infiltration in the tumor microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL
...